¹H AND ¹³C NMR CHEMICAL SHIFTS OF THE DIASTEREOTOPIC METHYL GROUPS OF VALYL AND LEUCYL RESIDUES IN PEPTIDES AND PROTEINS

Dedicated to Professor Yu Wang on the occasion of his 80th birthday.

D. NERI, G. OTTING, K. WÜTHRICH^{*} Institut für Molekularbiologie und Biophysik Eidgenossische Technische Hochschule – Hönggerberg CH-8093 Zürich, Switzerland (*Received in Japan 21 December* 1989)

Abstract - Stereospecific ¹H and ¹³C NMR assignments for the diastereotopic methyl groups of the valyl and leucyl residues in a cyclic peptide and in two globular proteins were obtained using biosynthetically directed fractional isotope labeling with ¹³C. The methyl chemical shifts are analyzed with respect to possible correlations with the stereochemistry of these amino acid side chains.

The results presented in this paper are an offspring of studies on the nuclear magnetic resonance (NMR)¹ method for the determination of protein three-dimensional structures.² NMR in solution is presently the only method besides X-ray diffraction in protein single crystals that can be used to determine protein structures at atomic resolution. Although the first complete solution structure of a globular protein was reported only in 1985³ the method is by now quite well established.⁴ and there is keen interest in additional refinements of the structures obtained by NMR. One evenue toward this goal is by obtaining, in addition to the sequence-specific $^{1}\mathrm{H}$ NMR assignments,^{2,5} stereospecific assignments for the diastereotopic groups of protons in the individual amino acid residues.^{2,6-9} In this context we introduced the technique of biosynthetically directed fractional ¹³C labeling for the individual assignment of the diastereotopic methyl groups of Val and Leu.¹⁰ Using this method, stereospecific assignments for the methyl groups of Val and Leu have so far been determined in cyclosporin A^{10} and the DNA-binding domain of the 434 repressor protein.¹¹ In the present paper corresponding assignments are reported for the DNA-binding domain of the P22 c2 repressor protein, and for L-valine and L-leucine in the hydrolysate of this protein. Although the prime interest in these results is with regard to the refinement of the protein structure determinations, which will be reported elsewhere, they also represent an important collection of 1 H and 13 C chemical shift data on the diastereotopic methyl groups. These chemical shifts are compiled in Table 1 and analyzed in the last section of this paper.

Stereospecific NMR assignments for the methyl groups of value and leucine by biosynthetically directed fractional 13 C-labeling make use of the fact that the

biosynthesis of the amino acids valine and leucine from glucose is known to be stereoselective.¹² Thereby, as is shown in Fig. 1, the isopropyl group is made up of a two-carbon fragment from one pyruvate unit, while the second methyl group is transferred from another pyruvate unit. This methyl migration has been shown to be stereoselective, and the migrating methyl group is found in the pro-S position in both valine and leucine, i.e., it corresponds to $\gamma^2 CH_3$, or $\delta^2 CH_3$, respectively, in the standard IUB/IUPAC nomenclature for amino acids.

Biosynthetically directed fractional ¹³C labeling of proteins can be achieved by growing microorganisms on minimal media containing a mixture of roughly 10% [¹³C₂]-

Fig. 1 Reaction pathways for the biosynthesis of value and leucine from a mixture of fully ¹³C labeled and unlabeled glucose, showing the stereochemistry and the principal labeling patterns (A star indicates a carbon position containing 10% ¹³C, the absence of the star indicates that the ¹³C abundance is 1.2% (see text)). glucose and 90% unlabeled glucose as the sole carbon source. The carbon positions in such preparations are ¹³C labeled to an extent of about 10%. Assuming a random distribution of the ¹³C labels and taking into account the natural ¹³C abundance of 1.1% in the unlabeled glucose, the probability that two adjacent carbon positions are labeled in the same molecule is then 1.2%. The only exceptions to this arise if two adjacent carbon atoms originate from the same source molecule, whence this probability becomes 10%. These two situations are both present in the isopropyl group in valine and leucine (Fig. 1): The <u>pro-R</u> methyl group (γ^1 , or δ^1 , respectively) and the adjacent >CH- group originate from the same pyruvate molecule and are, in the absence of isotope scrambling, labeled with ¹³C in the same amino acid molecules. On the other hand, the <u>pro-S</u> methyl group and the adjacent carbon atom originate from two different pyruvate molecules (Fig. 1).

The stereospecific distinction between the pairs of isopropyl methyl groups in a fractionally ¹³C labeled protein is clearly evidenced in ¹H-decoupled ¹³C NMR spectra, where the ¹³C resonance of the <u>pro-R</u> methyl group is a doublet with a splitting of about 33 Hz due to the one-bond ¹³C-¹³C coupling with the neighboring ¹³C spin, while

Fig. 2 Experimental scheme of [¹³C,¹H]-COSY¹⁴ which provides decoupling of the ¹H-¹³C scalar couplings in both dimensions, and of the ¹H-¹H couplings in ω_1 . 90-degree pulses are indicated by thin bars, and 180-degree pulses by broad bars. SL_x denotes a spin lock pulse of 2 ms duration with phase x, which purges the magnetization from ¹²C-bound protons.¹⁵ The delay τ is set to 1/2 ¹J(¹H,¹³C) (in the experiment of Fig. 4, $\tau = 3.6$ ms). The following 64-step phase cycle was used: $\Phi_1 = (x, x, -x, -x)_{16}$, $\Phi_2 = [(y)_4(-y)_4]_8$, $\Phi_3 = [(x)_8(-x)_8]_4$, $\Phi_4 = [(x)_{16}(-x)_{16}]_2$, $\Phi_5 = (x)_{64}$, $\Phi_6 = [(x)_4(-x)_4]_8$, $\Phi_7 = (x, -x)_{16}(-x, x)_{16}$, receiver $-(x, -x, -x, x)_8(-x, x, x, x)_8$. The phases Φ_5 and Φ_6 are subjected to TPPI for quadrature detection in ω_1 .¹⁶ ¹³C broadband decoupling during acquisition was obtained using WALTZ-16 with cycled sidebands.¹⁷ the ¹³C NMR signal of the <u>pro-S</u> methyl group is a singlet. For work with proteins, 2D NMR experiments are usually employed to ensure a workable spectral resolution.^{2,13}

Fig. 3 The right side shows schematic drawings of the dominant multiplet fine structures expected for the methyl ¹³C-¹H cross peaks of Val and Leu in [13C, 1H]-COSY spectra recorded using the experiment of Fig. 2 with a protein preparation containing biosynthetically directed fractional ¹³C labeling in the extent of ca. 10% (Fig.1). The arrows in the chemical structures indicate the relevant coherence transfer. The left side shows cross sections through the two methyl cross peaks of Val 30 in the spectrum of the P22 c2 repressor(1-76) in Fig. 4B. (A) For γ^2 CH₂ of Val and δ^2 CH₂ of Leu the cross peak consists of a single component. This pattern is the same as that seen for all methyl groups in a protein with natural abundance of ¹³C (Fig. 4A). (B) For γ^1 CH₂ of Val and δ^1 CH₂ of Leu the cross peak consists of two components separated along ω_1 by the ¹J(¹³C,¹³C) coupling with the methine carbon. The weak signal in the center comes from the natural abundance of 13C.

For the studies with the P22 c2 repressor(1-76) we used the experimental scheme of Fig. 2. Compared to the NMR experiments employed previously for the same purpose, ^{10,11} this experiment has the advantage to afford ¹³C broadband decoupling during the ¹H observation period t₂, which results in improved sensitivity and spectral resolution. The <u>pro-S</u> and <u>pro-R</u> methyl resonances can readily be distinguished from the different multiplicities along the ω_1 axis, as is illustrated in Fig. 3 by schematic drawings as well as by an experimental example.

Fig. 4 [¹³C,¹H]-COSY spectra of 5 mM solutions of P22 c2 repressor(1-76) in ²H₂O, p²H = 4.8, T = 28°C, recorded with the experiment of Fig. 2. The spectral regions shown contain the cross peaks between the directly bonded ¹³C and ¹H atoms of the methyl groups of valine and leucine. The resonance assignments are given by the one-letter code for the amino acids, the sequence position, and individual identifications of the methyl groups according to the standard IUB-IUPAC nomenclature, where γ^1 and δ^1 are <u>pro-R</u>, and γ^2 and δ^2 are <u>pro-S</u>. (A) Natural abundance of ¹³C. Spectral parameters: ¹Hfrequency 500 MHz, t_{1max} = 97 ms, t_{2max} = 204 ms, total recording time about 58 h. (B) Biosynthetically directed fractional ¹³C labeling in the extent of 8%. Spectral parameters: ¹H-frequency 600 MHz, t_{1max} = 90 ms, t_{2max} = 188 ms, total recording time about 27 h. In the presently used preparation of P22 c2 repressor(1-76), comparison of the ¹³C satellites with the main peaks in a ¹H NMR spectrum showed that the extent of ¹³C labeling was <u>ca</u>. 8%. The methyl resonances of the 4 Val and 10 Leu residues in this protein are all in the spectral region shown in Fig. 4. At natural abundance of ¹³C (Fig. 4A), all methyl cross peaks have the fine structure of Fig. 3A, as expected. In the labeled protein (Fig. 4B) half of the methyl cross peaks of Val and Leu have the two-component fine structure of Fig. 3B, which identifies these methyls as γ^1 of Val, or δ^1 of Leu, respectively. Fig. 4 shows that all 28 ¹³C-¹H methyl cross peaks of Val and Leu in the P22 c2 repressor(1-76) were resolved in the decoupled [¹³C,¹H]-COSY spectrum, and complete stereospecific assignments were obtained (Table 1). The sequence-specific resonance assignments given in Fig. 4 are based on conventional sequential ¹H NMR assignments.

Polypeptide	Residue			$\delta(^{1}H)[ppm]^{+}$			δ(¹³ C)[ppm] ⁺		
			<u>pro-R</u>	<u>pro-S</u>	∆δ(¹H) [*]	<u>pro-R</u>	<u>pro-S</u>	Δδ(¹³ C) [*]	
L-Valine			1.04	1.00	0.04	20.8	19.5	1.3	
L-Leucine			0.96	0.94	0.02	24.9	23.8	1.1	
Cyclosporin A [†]	Val	5	0.90	1.06	-0,16	18.5	19.8	-1.3	
	MeVal	11	1.01	0.86	0.15	18.7	20.3	-1.6	
	MeLeu	4	0.95	0.88	0.07	23.5	21.2	2.3	
	MeLeu	6	0.85	0.94	-0.09	21.9	23.9	-2.0	
	MeLeu	9	0.97	0.89	0.08	23.7	21.9	1.8	
	MeLeu	10	0.98	0,98	0.00	23.8	23.4	0.4	
434 Repressor [†]	Val	6	1.15	1.16	-0.01	21.3	25.9	-4.6	
	Val	24	0.75	0.88	-0.13	22.6	24.1	-1.5	
	Val	54	0.46	1.04	-0.58	21.3	21.2	0.1	
	Val	56	1.02	1.09	-0.07	22.1	23.6	-1.5	
	Val	68	0.97	0.97	0.00	21.4	21.7	-0.3	
	Leu	13	1.02	0.96	0.06	26.2	22.9	3.3	
	Leu	15	0.85	0.83	0.02	26.6	23.3	3.3	
	Leu	20	0.89	0.95	-0.06	23.5	26.9	-3.4	
	Leu	34	0.94	1.07	-0.13	24.8	28.3	-3.5	
	Leu	45	0.98	0.92	0.06	25.7	25.4	0.3	
	Leu	48	1.05	1.05	0.00	25.1	27.7	-2.6	

<u>Table 1</u> Methyl Chemical Shifts of L-Valine, L-Leucine and the Valyl and Leucyl Residues in Cyclosporin A, 434 Repressor(1-69) and P22 c2 Repressor(1-76)

3293

			Leu	52	1.05	0.85	0.20	27.3	22.6	4.7
			Leu	59	0.94	1.00	-0.06	26.4	24.6	1.8
			Leu	60	0.89	0.87	0.02	25.6	23.3	2.3
P22	c2	Repressor	Val	28	1.17	1.13	0.04	21.9	22.5	-0.6
			Val	30	0.95	0.51	0.44	21.0	18.0	3.0
			Val	33	0.78	0.94	-0.16	20.4	21.9	-1.5
			Val	74	0.76	0.83	-0.07	21.0	20.0	1.0
			Leu	5	0.99	0.92	0.07	25.3	22.5	2.8
			Leu	17	0.88	0.83	0.05	25.6	22.0	3.6
			Leu	24	1.02	0.96	0.06	24.4	26.6	-2.2
			Leu	50	0.81	0.86	-0.05	24.3	25.4	-1.1
			Leu	51	0.96	0.92	0.04	24.3	23.1	1.2
		Leu	53	0.83	0.97	-0.14	25.2	25.3	-0.1	
			Leu	57	1.02	0.80	0.22	27.1	22.1	5.0
			Leu	64	0.73	0.73	0.00	26.4	22.3	4.1
			Leu	65	0.83	0.85	-0.02	24.5	23.8	0.7
			Leu	69	0.94	0.87	0.07	25.0	23.3	1.7

Table 1 (continued)

⁺ The ¹H and ¹³C chemical shifts are listed for the methyl groups of all Val and Leu residues in the compounds studied. Pro-R is γ^1 in Val and δ^1 in Leu; pro-S is γ^2 in Val and δ^2 in Leu. Chemical shifts were measured at the following conditions: Lvaline and L-leucine, solvent ${}^{2}H_{2}O$ at $p^{2}H = 1.0$, T = 20°C, internal reference TSP; Cyclosporin A, solvent $C^{2}HCl_{3}$, T = 20°C, internal reference TMS; 434 repressor, solvent ${}^{2}\text{H}_{2}\text{O}$ at $p{}^{2}\text{H}$ = 6.0, T = 28°C, internal reference TSP; P22 c2 repressor, solvent ${}^{2}\text{H}_{2}\text{O}$ at $p^{2}\text{H} = 4.8$, T - 28°C, internal reference TSP. * $\Delta \delta = \delta(pro-R) - \delta(pro-S)$ + From ref. 10 + From ref. 11

In addition to the data for the P22 c2 repressor(1-76) Table 1 lists the $^{1}\mathrm{H}$ and ¹³C chemical shifts of L-valine and L-leucine, which were measured in a hydrolysate of fractionally labeled P22 c2 repressor, and of cyclosporin A^{10} and 434 repressor(1-69), ¹¹ The chemical shift differences between the resonances of the pro-R and the pro-S methyls in each isopropyl group, $\Delta\delta(^{1}H)$ and $\Delta\delta(^{13}C)$, are also listed. Comparison of these chemical shift differences in different compounds may be more significant than comparison of the individual shifts, since these may be affected by the referencing used. In the free amino acids, for example, the chemical shift differences agree closely with those reported in the literature, ¹² even though the

absolute values of the individual shifts are somewhat different. The chemical shift differences observed in Val and Leu were of course expected from the systematic studies by Mislow and Raban¹⁹ of the inequivalence of the chemical shifts of diastereotopic substituents.

In the cyclic peptide cyclosporin A the ¹H chemical shifts among the individual valyl residues, or leucyl residues, respectively vary only over a narrow range of values, but the variation of the resulting chemical shift differences $\Delta\delta(^{1}\text{H})$ is nonetheless about tenfold larger than the intrinsic value in the free amino acids. The same general statement applies for the ¹H shifts in the two proteins. The only exceptions are Val 54 in 434 repressor(1-69), and Val 30 in P22 c2 repressor(1-76), which can be attributed to ring current shifts.² This small dispersion of the ¹H chemical shifts is rather unusual for globular proteins, ²² but it is clearly a consequence of the fact that 434 repressor(1-69) and P22 c2 repressor(1-76) contain, respectively, only 2 and 3 aromatic residues. In spite of the scarcity of aromatic residues in the two proteins considered here, the nonbonding, conformation-dependent influences on the ¹H chemical shifts are clearly dominant when compared to the intrinsic shift difference between the diastereotopic substituents.

Homologous resi	dues of Val and Leu*	Lower fi	Lower field methyl chemical shift ⁺				
		δ	(1H)	δ(¹³ C)			
434	P22 c2	434	P22 c2	434	P22 c2		
Leu 13	Leu 17	δ1	δ1	δ 1	δ 1		
Leu 20	Leu 24	δ2	δ1	δ2	δ2		
Val 24	Val 28	γ^2	γ ¹	γ^2	γ^2		
Leu 45	Leu 50	6 ¹	δ2	δ1	δ ²		
Leu 48	Leu 53	(δ^2)	δ ²	δ ²	(δ^2)		
Leu 52	Leu 57	δ1	δ1	δl	δ 1		
Leu 59	Leu 64	δ ²	(δ^2)	δ ¹	δ 1		
Leu 60	Leu 65	δ ¹	δ2	δ ¹	δ1		
Val 68	Val 74	(γ^2)	γ²	γ¹	γ^1		

<u>Table 2</u> Comparison of the methyl ¹³C and ¹H chemical shifts of the homologous valyl and leucyl residues in 434 repressor(1-69) and P22 c2 repressor(1-76).

* Only those pairs of residues are listed that were reported in ref.21 to be in homologous positions in the two proteins.

⁺ Each column lists the methyl group with the lower field chemical shift at fixed radio-frequency. Parentheses are used for those residues where the chemical shifts of the two diastereotopic methyls are nearly degenerate. γ^1 in Val and δ^1 in Leu are <u>pro-R</u>, γ^2 and δ^2 are <u>pro-S</u>.

Qualitatively similar observations as for the ${}^{1}\mathrm{H}$ shifts can be made for the ${}^{13}\mathrm{C}$ chemical shifts. Again the conformation-dependent shifts are severalfold larger than the intrinsic difference between the two diastereotopic carbon atoms. Furthermore, it is worth noting that there is no apparent correlation between the conformationdependent effects on the 1 H and 13 C chemical shifts. This statement applies to the extent and sign of the individual chemical shifts as well as to the chemical shift differences within the individual isopropyl groups, indicating that the conformationdependent shifts of the two spin types are caused by different mechanisms. Experimental evidence leading to similar conclusions had already been reported previously, based on sequence-specific ¹H and ¹³C NMR assignments for methyl resonances in a protein.²⁰

For continued studies with peptides and proteins there is little hope that the intrinsic chemical shifts of the diastereotopic methyls could be widely used for the purpose of facile resonance assignments. From various analyses of the data in Table 1 there resulted nonetheless an indication that the sign of the chemical shift difference $\Delta\delta(^{13}C)$ might be of some use in studies of homologous proteins. As is seen from Table 2, which compares the Val and Leu residues that occupy homologous positions in 434 repressor(1-69) and P22 c2 repressor(1-76), there is only a single exception to the rule that $\Delta\delta(^{13}C)$ has the same sign for homologous residues. In contrast, one observes a random distribution of the signs for $\Delta\delta({}^{1}\mathrm{H})$ among the same homologous residues (Table 2).

Acknowledgments

We thank the Schweizerische Nationalfonds (project 31.25174.88) for financial support and Mr. R. Marani for the careful processing of the manuscript.

References

- Abbreviations: NMR, nuclear magnetic resonance; [13C, 1H]-COSY, two-dimensional 1. ¹³C-¹H correlated spectroscopy; TMS, tetramethylsilane; TSP, 3 (trimethylsily1) [2,2,3,3-2H,]-propionate, sodium salt; P22 c2 repressor(1-76), N-terminal DNAbinding domain containing residues 1-76 of P22 c2 repressor; 434 repressor(1-69), N-terminal DNA-binding domain containing residues 1-69 of 434 repressor.
- Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley; New York, 1986.
 Williamson, M.P.; Havel, T.F.; Wuthrich, K. J. Mol. Biol. 1985, 182, 295-315.
- 4. (a) Bax, A.; Annu. Rev. Biochem. **1989**, 58, 223-256. (b) Clore, G.M.; Gronenborn, A.M. in Crit. Rev. Biochem. Mol. Biol. **1989**, 24, 479-564. (c) Kaptein, R.; Boelens, R.; Scheek, R.M.; van Gunsteren, W.F. Biochemistry 1988, 27, 5389-5395. (d) Wright, P.E. Trend Biochem. Sciences 1989, 14, 255-260. (e) Wuthrich, K. Acc. Chem. Res. 1989, 22, 36-44. (f) Wuthrich, K. Science 1989, 243, 45-50.
- 5. Wüthrich, K.; Wider, G.; Wagner, G.; Braun, W. J. Mol. Biol. 1982, 155, 311-319.
- Wuthrich, K.; Billeter, M.; Braun, W. J. Mol. Biol. 1983, 169, 949-961.
 Kline, A.D.; Braun, W.; Wuthrich, K. J. Mol. Biol. 1988, 204, 675-724.
- 8. Guntert, P.; Braun, W.; Billeter, M.; Wuthrich, K. J. Am. Chem. Soc. 1989, 111, 3997-4004.
- 9 Driscoll, P.C.; Gronenborn, A.M.; Clore, G.M. FEBS Lett. 1989, 243, 223-233.
- 10. Senn, H.; Werner, B.; Messerle, B.; Weber, C.; Traber, R.; Wuthrich, K. FEBS Lett. 1989, 249, 113-118.
- 11. Neri, D.; Szyperski, T.; Otting, G.; Senn, H.; Wüthrich, K. Biochemistry 1989, 28, 7510-7516.
- 12. (a) Crout, D.H.G.; Hedgecock, J.R., Lipscomb, E.L.; Armstrong, F.B. Chem. Commun. **1980**, 304-305. (b) Sylvester, S.R.; Stevens, C.M. Biochemistry **1979**, 18, 4529-4531. (c) Hill, R.K.; Yan, S.; Arfin, S.M. J. Am. Chem. Soc. **1973**, 95, 7857-7859. (d) Hill, R.K.; Sawada, S.; Arfin, S.M. Bioorg. Chem. 1979, 8, 175-189.

- 13. Ernst, R.R.; Bodenhausen, G.; Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon Press; Oxford, 1987.
- 14. Bodenhausen, G.; Ruben, D. Chem. Phys. Lett. 1980, 69, 185-188.
- 15. Otting, G.; Wüthrich, K. J. Magn. Reson. 1988, 204, 569-574.
- 16. Marion, D.; Wuthrich, K. Biochem. Biophys. Res. Comm. 1983, 113, 967-974.
- 17. Shaka, A.J.; Barker, P.B.; Bauer, C.J.; Freeman, R. J. Magn. Reson. 1986, 67, 396-401.
- 18. Otting, G. Strukturermittlung an kleinen Proteinen mit NMR: neue Methoden und Anwendungen am Beispiel der Cardiotoxine von Naja Mossambica Mossambica und des P22 c2 Repressors. Ph.D. Thesis Nr.8314, ETH Zurich, 1987.
- 19. Mislow, K.; Raban, M. Topics Stereochem. **1967**, 1, 1-38. 20. Richarz, R.; Wüthrich, K. FEBS Lett. **1977**, 79, 64-68. Richarz, R.; Wüthrich, K. Biochemistry 1978, 17, 2263-2269. 21. Sauer, R.T.; Yocum, R.R.; Doolittle, R.F.; Lewis, M.; Pabo, C.O. Nature 1982,
- 298, 447-451.
- 22. Wüthrich, K. NMR in Biological Research: Peptides and Proteins; North Holland; Amsterdam, 1976.